Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 579
Filtrar
1.
Biochem Biophys Res Commun ; 706: 149766, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38484568

RESUMO

Secretory myeloid-derived growth factor (MYDGF) exerts beneficial effects on organ repair, probably via a plasma membrane receptor; however, the identity of the expected receptor has remained elusive. In a recent study, MYDGF was reported as an agonist of the sphingosine-1-phosphate receptor 2 (S1PR2), an A-class G protein-coupled receptor that mediates the functions of the signaling lipid, sphingosine-1-phosphate (S1P). In the present study, we conducted living cell-based functional assays to test whether S1PR2 is a receptor for MYDGF. In the NanoLuc Binary Technology (NanoBiT)-based ß-arrestin recruitment assay and the cAMP-response element (CRE)-controlled NanoLuc reporter assay, S1P could efficiently activate human S1PR2 overexpressed in human embryonic kidney (HEK) 293T cells; however, recombinant human MYDGF, overexpressed either from Escherichia coli or HEK293 cells, had no detectable effect. Thus, the results demonstrated that human MYDGF is not a ligand of human S1PR2. Considering the high conservation of MYDGF and S1PR2 in evolution, MYDGF is also probably not a ligand of S1PR2 in other vertebrates.


Assuntos
Fator Estimulador de Colônias de Granulócitos , Receptores de Lisoesfingolipídeo , Esfingosina/análogos & derivados , Animais , Humanos , Receptores de Esfingosina-1-Fosfato , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Ligantes , Células HEK293 , Lisofosfolipídeos/farmacologia
2.
Arterioscler Thromb Vasc Biol ; 44(4): 883-897, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38328936

RESUMO

BACKGROUND: Myeloid cells (MCs) reside in the aortic intima at regions predisposed to atherosclerosis. Systemic inflammation triggers reverse transendothelial migration (RTM) of intimal MCs into the arterial blood, which orchestrates a protective immune response that clears intracellular pathogens from the arterial intima. Molecular pathways that regulate RTM remain poorly understood. S1P (sphingosine-1-phosphate) is a lipid mediator that regulates immune cell trafficking by signaling via 5 G-protein-coupled receptors (S1PRs [S1P receptors]). We investigated the role of S1P in the RTM of aortic intimal MCs. METHODS: Intravenous injection of lipopolysaccharide was used to model a systemic inflammatory stimulus that triggers RTM. CD11c+ intimal MCs in the lesser curvature of the ascending aortic arch were enumerated by en face confocal microscopy. Local gene expression was evaluated by transcriptomic analysis of microdissected intimal cells. RESULTS: In wild-type C57BL/6 mice, lipopolysaccharide induced intimal cell expression of S1pr1, S1pr3, and Sphk1 (a kinase responsible for S1P production). Pharmacological modulation of multiple S1PRs blocked lipopolysaccharide-induced RTM and modulation of S1PR1 and S1PR3 reduced RTM in an additive manner. Cre-mediated deletion of S1pr1 in MCs blocked lipopolysaccharide-induced RTM, confirming a role for myeloid-specific S1PR1 signaling. Global or hematopoietic deficiency of Sphk1 reduced plasma S1P levels, the abundance of CD11c+ MCs in the aortic intima, and blunted lipopolysaccharide-induced RTM. In contrast, plasma S1P levels, the abundance of intimal MCs, and lipopolysaccharide-induced RTM were rescued in Sphk1-/- mice transplanted with Sphk1+/+ or mixed Sphk1+/+ and Sphk1-/- bone marrow. Stimulation with lipopolysaccharide increased endothelial permeability and intimal MC exposure to circulating factors such as S1P. CONCLUSIONS: Functional and expression studies support a novel role for S1P signaling in the regulation of lipopolysaccharide-induced RTM and the homeostatic maintenance of aortic intimal MCs. Our data provide insight into how circulating plasma mediators help orchestrate intimal MC dynamics.


Assuntos
Receptores de Lisoesfingolipídeo , Migração Transendotelial e Transepitelial , Camundongos , Animais , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos Endogâmicos C57BL , Esfingosina/metabolismo , Células Mieloides/metabolismo , Lisofosfolipídeos/metabolismo , Túnica Íntima/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
3.
FEBS J ; 291(8): 1744-1758, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38287231

RESUMO

Endometriosis is a chronic gynecological syndrome characterized by endometrial cell invasion of the extra-uterine milieu, pelvic pain and infertility. Treatment relies on either symptomatic drugs or hormonal therapies, even though the mechanism involved in the onset of endometriosis is yet to be elucidated. The signaling of sphingolipid sphingosine 1-phosphate (S1P) is profoundly dysregulated in endometriosis. Indeed, sphingosine kinase (SK)1, one of the two isoenzymes responsible for S1P biosynthesis, and S1P1, S1P3 and S1P5, three of its five specific receptors, are more highly expressed in endometriotic lesions compared to healthy endometrium. Recently, missense coding variants of the gene encoding the receptor 1 for neuropeptide S (NPS) have been robustly associated with endometriosis in humans. This study aimed to characterize the biological effect of NPS in endometriotic epithelial cells and the possible involvement of the S1P signaling axis in its action. NPS was found to potently induce cell invasion and actin cytoskeletal remodeling. Of note, the NPS-induced invasive phenotype was dependent on SK1 and SK2 as well as on S1P1 and S1P3, given that the biological action of the neuropeptide was fully prevented when one of the two biosynthetic enzymes or one of the two selective receptors was inhibited or silenced. Furthermore, the RhoA/Rho kinase pathway, downstream to S1P receptor signaling, was found to be critically implicated in invasion and cytoskeletal remodeling elicited by NPS. These findings provide new information to the understanding of the molecular mechanisms implicated in endometriosis pathogenesis, establishing the rationale for non-hormonal therapeutic targets for its treatment.


Assuntos
Endometriose , Receptores de Lisoesfingolipídeo , Esfingosina , Feminino , Humanos , Endometriose/genética , Lisofosfolipídeos/metabolismo , Fenótipo , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/metabolismo , Esfingosina/análogos & derivados
4.
J Clin Invest ; 134(4)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38194271

RESUMO

Effective immunity requires a large, diverse naive T cell repertoire circulating among lymphoid organs in search of antigen. Sphingosine 1-phosphate (S1P) and its receptor S1PR1 contribute by both directing T cell migration and supporting T cell survival. Here, we addressed how S1P enables T cell survival and the implications for patients treated with S1PR1 antagonists. We found that S1PR1 limited apoptosis by maintaining the appropriate balance of BCL2 family members via restraint of JNK activity. Interestingly, the same residues of S1PR1 that enable receptor internalization were required to prevent this proapoptotic cascade. Findings in mice were recapitulated in ulcerative colitis patients treated with the S1PR1 antagonist ozanimod, and the loss of naive T cells limited B cell responses. Our findings highlighted an effect of S1PR1 antagonists on the ability to mount immune responses within lymph nodes, beyond their effect on lymph node egress, and suggested both limitations and additional uses of this important class of drugs.


Assuntos
Linfonodos , Linfócitos T , Animais , Humanos , Camundongos , Linfócitos B , Linfonodos/patologia , Lisofosfolipídeos , Receptores de Lisoesfingolipídeo/genética , Transdução de Sinais , Esfingosina , Receptores de Esfingosina-1-Fosfato
5.
J Cell Mol Med ; 27(23): 3786-3795, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37710406

RESUMO

Posttraumatic osteomyelitis and the ensuing bone defects are a debilitating complication after open fractures with little therapeutic options. We have recently identified potent osteoanabolic effects of sphingosine-1-phosphate (S1P) signalling and have now tested whether it may beneficially affect bone regeneration after infection. We employed pharmacological S1P lyase inhibition by 4-deoxypyrodoxin (DOP) to raise S1P levels in vivo in an unicortical long bone defect model of posttraumatic osteomyelitis in mice. In a translational approach, human bone specimens of clinical osteomyelitis patients were treated in organ culture in vitro with DOP. Bone regeneration was assessed by µCT, histomorphometry, immunohistology and gene expression analysis. The role of S1P receptors was addressed using S1PR3 deficient mice. Here, we present data that DOP treatment markedly enhanced osteogenesis in posttraumatic osteomyelitis. This was accompanied by greatly improved osteoblastogenesis and enhanced angiogenesis in the callus accompanied by osteoclast-mediated bone remodelling. We also identified the target of increased S1P to be the S1PR3 as S1PR3-/- mice showed no improvement of bone regeneration by DOP. In the human bone explants, bone mass significantly increased along with enhanced osteoblastogenesis and angiogenesis. Our data suggest that enhancement of S1P/S1PR3 signalling may be a promising therapeutic target for bone regeneration in posttraumatic osteomyelitis.


Assuntos
Liases , Osteoclastos , Humanos , Animais , Camundongos , Osteoclastos/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Lisofosfolipídeos/metabolismo , Esfingosina/metabolismo , Regeneração Óssea , Liases/metabolismo , Receptores de Lisoesfingolipídeo/genética
6.
Sci Signal ; 16(798): eade6737, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582160

RESUMO

The G protein-coupled receptor (GPCR) US28 encoded by the human cytomegalovirus (HCMV) is associated with accelerated progression of glioblastomas, aggressive brain tumors with a generally poor prognosis. Here, we showed that US28 increased the malignancy of U251 glioblastoma cells by enhancing signaling mediated by sphingosine-1-phosphate (S1P), a bioactive lipid that stimulates oncogenic pathways in glioblastoma. US28 expression increased the abundance of the key components of the S1P signaling axis, including an enzyme that generates S1P [sphingosine kinase 1 (SK1)], an S1P receptor [S1P receptor 1 (S1P1)], and S1P itself. Enhanced S1P signaling promoted glioblastoma cell proliferation and survival by activating the kinases AKT and CHK1 and the transcriptional regulators cMYC and STAT3 and by increasing the abundance of cancerous inhibitor of PP2A (CIP2A), driving several feed-forward signaling loops. Inhibition of S1P signaling abrogated the proliferative and anti-apoptotic effects of US28. US28 also activated the S1P signaling axis in HCMV-infected cells. This study uncovers central roles for S1P and CIP2A in feed-forward signaling that contributes to the US28-mediated exacerbation of glioblastoma.


Assuntos
Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Receptores de Esfingosina-1-Fosfato/genética , Transdução de Sinais , Lisofosfolipídeos/metabolismo , Esfingosina/metabolismo , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo
7.
Elife ; 122023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37039481

RESUMO

The activation of Sphingosine-1-phosphate receptor 1 (S1PR1) by S1P promotes lymphocyte egress from lymphoid organs, a process critical for immune surveillance and T cell effector activity. Multiple drugs that inhibit S1PR1 function are in use clinically for the treatment of autoimmune diseases. Cluster of Differentiation 69 (CD69) is an endogenous negative regulator of lymphocyte egress that interacts with S1PR1 in cis to facilitate internalization and degradation of the receptor. The mechanism by which CD69 causes S1PR1 internalization has been unclear. Moreover, although there are numerous class A GPCR structures determined with different small molecule agonists bound, it remains unknown whether a transmembrane protein per se can act as a class A GPCR agonist. Here, we present the cryo-EM structure of CD69-bound S1PR1 coupled to the heterotrimeric Gi complex. The transmembrane helix (TM) of one protomer of CD69 homodimer contacts the S1PR1-TM4. This interaction allosterically induces the movement of S1PR1-TMs 5-6, directly activating the receptor to engage the heterotrimeric Gi. Mutations in key residues at the interface affect the interactions between CD69 and S1PR1, as well as reduce the receptor internalization. Thus, our structural findings along with functional analyses demonstrate that CD69 acts in cis as a protein agonist of S1PR1, thereby promoting Gi-dependent S1PR1 internalization, loss of S1P gradient sensing, and inhibition of lymphocyte egress.


Assuntos
Linfócitos , Receptores de Lisoesfingolipídeo , Fatores Imunológicos , Linfócitos/metabolismo , Proteínas de Membrana , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Linfócitos T/metabolismo
8.
Lipids Health Dis ; 22(1): 52, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072847

RESUMO

Sphingosine-1-phosphate (S1P) is a sphingolipid mediator that exerts a variety of biological functions, including immune, cardiovascular, and neurological regulation as well as tumor promotion, through high-affinity G protein-coupled receptors (S1P1-5). It has been reported that circulating S1P levels remain higher in patients with psoriasis than in healthy individuals and that circulating S1P levels do not decrease after anti-TNF-α treatment in those patients. The S1P-S1PR signaling system plays an important role in inhibiting keratinocyte proliferation, regulating lymphocyte migration, and promoting angiogenesis, thus contributing to the regulation of psoriasis pathogenesis. Here, we review the mechanisms by which S1P-S1PR signaling affects the development of psoriasis and the available clinical/preclinical evidence for targeting S1P-S1PR in psoriasis. S1P-S1PR signaling mechanisms may partially explain the link between psoriasis and its comorbidities. Although the detailed mechanisms remain to be elucidated, S1P may be a new target for future psoriasis remission.


Assuntos
Psoríase , Inibidores do Fator de Necrose Tumoral , Humanos , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Esfingosina/metabolismo , Lisofosfolipídeos/metabolismo , Psoríase/tratamento farmacológico , Psoríase/genética , Psoríase/patologia , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo
9.
EMBO Mol Med ; 15(5): e16645, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36912000

RESUMO

Sphingosine-1-phosphate (S1P), the circulating HDL-bound lipid mediator that acts via S1P receptors (S1PR), is required for normal vascular development. The role of this signaling axis in vascular retinopathies is unclear. Here, we show in a mouse model of oxygen-induced retinopathy (OIR) that endothelial overexpression of S1pr1 suppresses while endothelial knockout of S1pr1 worsens neovascular tuft formation. Furthermore, neovascular tufts are increased in Apom-/- mice which lack HDL-bound S1P while they are suppressed in ApomTG mice which have more circulating HDL-S1P. These results suggest that circulating HDL-S1P activation of endothelial S1PR1 suppresses neovascular pathology in OIR. Additionally, systemic administration of ApoM-Fc-bound S1P or a small-molecule Gi-biased S1PR1 agonist suppressed neovascular tuft formation. Circulating HDL-S1P activation of endothelial S1PR1 may be a key protective mechanism to guard against neovascular retinopathies that occur not only in premature infants but also in diabetic patients and aging people.


Assuntos
Neovascularização Retiniana , Camundongos , Animais , Receptores de Esfingosina-1-Fosfato , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/agonistas , Lipoproteínas HDL , Esfingosina , Lisofosfolipídeos
10.
Eur Rev Med Pharmacol Sci ; 27(2): 713-727, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36734728

RESUMO

OBJECTIVE: Sphingosine-1-phosphate (S1P) is a sphingolipid protein with anti-apoptotic and pro-survival effects on cancer cells via S1P receptors (S1PRs); however, the role of S1PRs in the tumor microenvironment and immune invasion is still unclear. This study investigated the relationship between S1PR expressions and patient survival and clinical manifestations with respect to the tumor microenvironment and immune infiltration. MATERIALS AND METHODS: The expression levels of five S1PRs were obtained from The Cancer Genome Atlas pan-cancer database and the Kaplan-Meier survival analysis was performed. We predicted the relationship between S1PRs expression levels and patient survival using the univariate Cox proportional hazard regression model. Subsequently, we analyzed correlations between S1PRs expression and infiltrating immune cell subtypes using the Kolmogorov-Smirnov test and the infiltration levels of immune and stromal cells in each tumor using the ESTIMATE algorithm and Spearman's test. RESULTS: The five S1PRs exhibited significant heterogeneity in their expression levels. The expression levels correlated with overall patient survival; however, anti-apoptotic or pro-apoptotic features varied depending on the cancer type. The variable effects of S1PRs on tumors may be related to TGF-ß levels. Our results suggest that S1PRs exert distinct influences on the tumor stem cell index and chemotherapeutic drug sensitivity. CONCLUSIONS: This research provides comprehensive information on the importance of S1PRs in the immune microenvironment, stemness score, sensitivity of human cancer drugs, and cancer prognosis. Interestingly, our findings indicate variations in the expression levels and functions of different S1PR family members. This study highlights S1PRs as potential new targets for antitumor (adjuvant) therapy.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Receptores de Esfingosina-1-Fosfato , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Neoplasias/terapia , Neoplasias/metabolismo , Imunoterapia , Microambiente Tumoral
11.
Endocrinology ; 164(3)2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36690339

RESUMO

Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid that regulates fundamental cellular processes such as proliferation, migration, apoptosis, and differentiation through 5 cognate G protein-coupled receptors (S1P1-S1P5). We previously demonstrated that blockade of S1P2 signaling in S1P2-deficient mice attenuates high-fat diet-induced adipocyte hypertrophy and glucose intolerance and an S1P2-specific antagonist JTE-013 inhibits, whereas an S1P1/S1P3 dual antagonist (VPC23019) activates, adipogenic differentiation of preadipocytes. Based on those observations, this study examined whether an S1P1-specific agonist, SEW-2871, VPC23019, or their combination acts on obesity and glucose intolerance in leptin-deficient ob/ob mice. The oral administration of SEW-2871 or JTE-013 induced significant reductions in body/epididymal fat weight gains and epididymal/inguinal fat adipocyte sizes and improved glucose intolerance and adipocyte inflammation in ob/ob mice but not in their control C57BL/6J mice. Both SEW-2871 and JTE-013 decreased messenger RNA levels of tumor necrosis factor-α and CD11c, whereas they increased those of CD206 and adiponectin in the epididymal fats isolated from ob/ob mice with no changes in the levels of peroxisome proliferator activated receptor γ and its regulated genes. By contrast, VPC23019 did not cause any such alterations but counteracted with all those SEW-2871 actions in these mice. In conclusion, the S1P1 agonist SEW-2871 acted like the S1P2 antagonist JTE-013 to reduce body/epididymal fats and improve glucose tolerance in obese mice. Therefore, this study raises the possibility that endogenous S1P could promote obesity/type 2 diabetes through the S1P2, whereas exogenous S1P could act against them through the S1P1.


Assuntos
Diabetes Mellitus Tipo 2 , Intolerância à Glucose , Animais , Masculino , Camundongos , Glucose , Lisofosfolipídeos/farmacologia , Lisofosfolipídeos/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade , Receptores de Lisoesfingolipídeo/genética , Esfingosina/farmacologia , Esfingosina/fisiologia , Receptores de Esfingosina-1-Fosfato
12.
ESC Heart Fail ; 10(1): 334-341, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36217778

RESUMO

AIMS: Therapeutic options targeting post-ischaemic cardiac remodelling are sparse. The bioactive sphingolipid sphingosine-1-phosphate (S1P) reduces ischaemia/reperfusion injury. However, its impact on post-ischaemic remodelling independently of its infarct size (IS)-reducing effect is yet unknown and was addressed in this study. METHODS AND RESULTS: Acute myocardial infarction (AMI) in mice was induced by permanent ligation of the left anterior descending artery (LAD). C57Bl6 were treated with the S1P lyase inhibitor 4-deoxypyridoxine (DOP) starting 7 days prior to AMI to increase endogenous S1P concentrations. Cardiac function and myocardial healing were assessed by cardiovascular magnetic resonance imaging (cMRI), murine echocardiography, histomorphology, and gene expression analysis. DOP effects were investigated in cardiomyocyte-specific S1P receptor 1 deficient (S1PR1 Cardio Cre+) and Cre- control mice and S1P concentrations measured by LC-MS/MS. IS and cardiac function did not differ between control and DOP-treated groups on day one after LAD-ligation despite fourfold increase in plasma S1P. In contrast, cardiac function was clearly improved and myocardial scar size reduced, respectively, on Day 21 in DOP-treated mice. The latter also exhibited smaller cardiomyocyte size and reduced embryonic gene expression. The benefit of DOP treatment was abolished in S1PR1 Cardio Cre+. CONCLUSIONS: S1P improves cardiac function and myocardial healing post AMI independently of initial infarct size and accomplishes this via the cardiomyocyte S1PR1. Hence, in addition to its beneficial effects on I/R injury, S1PR1 may be a promising target in post-infarction myocardial remodelling as adjunctive therapy to revascularization as well as in patients not eligible for standard interventional procedures.


Assuntos
Infarto do Miocárdio , Receptores de Lisoesfingolipídeo , Camundongos , Animais , Receptores de Esfingosina-1-Fosfato/uso terapêutico , Cromatografia Líquida , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Receptores de Lisoesfingolipídeo/uso terapêutico , Espectrometria de Massas em Tandem , Infarto do Miocárdio/tratamento farmacológico
13.
Int J Mol Sci ; 23(24)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36555755

RESUMO

Basophils are key effector cells in atopic diseases, and the signaling sphingolipid Sphigosine-1-phosphate (S1P) is emerging as an important mediator in these conditions. The possible interaction of S1P and basophils and the resulting biological effects have not yet been studied. We hypothesize that S1P influences the function of basophils in atopy and aim to elucidate the modes of interaction. S1P receptor (S1PR) expression in human peripheral blood basophils from atopic and non-atopic patients was assessed through qRT-PCR and flow cytometry analysis. Functional effects of S1P were assessed through a basophil activation test (BAT), calcium flux, apoptosis, and chemotaxis assays. Immunofluorescence staining was performed to visualize intracellular S1P. Human basophils express S1PR1, S1PR2, S1PR3, and S1PR4 on the mRNA level. 0.1 µM S1P have anti-apoptotic, while 10 µM exhibits apoptotic effects on basophils. Basophils from atopic patients show less chemotactic activity in response to S1P than those from healthy donors. Protein expression of S1PR1 is downregulated in atopic patients, and basophils in lesional AD skin possess intracellular S1P. These findings suggest that the interaction of S1P and basophils might be an important factor in the pathophysiology of atopy.


Assuntos
Basófilos , Receptores de Lisoesfingolipídeo , Humanos , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Regulação para Cima , Basófilos/metabolismo , Esfingosina/metabolismo , Lisofosfolipídeos/metabolismo
14.
FASEB J ; 36(10): e22530, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36063128

RESUMO

Despite the best treatment, approximately 10% of fractures still face undesirable repair and result in delayed unions or non-unions. Dynamic mechanical stimulation promotes bone formation, when applied at the correct time frame, with optimal loading magnitude, frequency, and repetition. Controlled mechanical loading significantly increases osteogenic cells during the matrix deposition phase of bone repair. In the bone defect, the blood vessel network guides the initial bone formation activities. A unique blood vessel subtype (Type H) exists in bone, which expresses high levels of CD31 and endomucin, and functions to couple angiogenesis and osteogenesis. However, how this form of controlled mechanical loading regulates the Type H vessels and promotes bone formation is still not clear. Sphingosine 1-phosphate (S1P) participates in the bone anabolic process and is a key regulator of the blood vessel. Its receptor, sphingosine 1-phosphate receptor 1 (S1Pr1), is a mechanosensitive protein that regulates vascular integrity. Therefore, we hypothesis that controlled anabolic mechanical loading promotes bone repair by acting on Type H vessels. To study the effect of S1Pr1 on loading induced-bone repair, we utilized a stabilized tibial defect model, which allows for the application of anabolic mechanical loading. Mechanical loading upregulated S1Pr1 within the entire defect, with up to 80% expressed in blood vessels, as observed by deep tissue imaging. Additionally, S1Pr1 antagonism by W146 inhibited the anabolic effects of mechanical loading. We showed that mechanical loading or activating S1Pr1 could induce YAP nuclear translocation, a key regulator in the cell's mechanical response, in endothelial cells (ECs) in vitro. Inhibition of S1Pr1 in endothelial cells by siRNA reduced loading-induced YAP nuclear translocation and expressions of angiogenic genes. In vivo, YAP nuclear translocation in Type H vessels was up-regulated after mechanical loading but was inhibited by antagonizing S1Pr1. S1Pr1 agonist, FTY720, increased bone volume and Type H vessel volume, similar to that of mechanical stimulation. In conclusion, controlled anabolic mechanical loading enhanced bone formation mainly through Type H vessels in a S1Pr1-dependent manner.


Assuntos
Células Endoteliais , Receptores de Lisoesfingolipídeo , Regeneração Óssea , Células Endoteliais/metabolismo , Cloridrato de Fingolimode/farmacologia , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Receptores de Esfingosina-1-Fosfato
15.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142246

RESUMO

Transdifferentiation of Schwann cells is essential for functional peripheral nerve regeneration after injury. By activating a repair program, Schwann cells promote functional axonal regeneration and remyelination. However, chronic denervation, aging, metabolic diseases, or chronic inflammatory processes reduce the transdifferentiation capacity and thus diminish peripheral nerve repair. It was recently described that the sphingosine-1-phosphate receptor (S1PR) agonist Fingolimod enhances the Schwann cell repair phenotype by activation of dedifferentiation markers and concomitant release of trophic factors resulting in enhanced neurite growth. Since Fingolimod targets four out of five S1PRs (S1P1, S1P3-5) possibly leading to non-specific adverse effects, identification of the main receptor(s) responsible for the observed phenotypic changes is mandatory for future specific treatment approaches. Our experiments revealed that S1P3 dominates and that along with S1P1 acts as the responsible receptor for Schwann cell transdifferentiation as revealed by the combinatory application of specific agonists and antagonists. Targeting both receptors reduced the expression of myelin-associated genes, increased PDGF-BB representing enhanced trophic factor expression likely to result from c-Jun induction. Furthermore, we demonstrated that S1P4 and S1P5 play only a minor role in the adaptation of the repair phenotype. In conclusion, modulation of S1P1 and S1P3 could be effective to enhance the Schwann cell repair phenotype and thus stimulate proper nerve repair.


Assuntos
Cloridrato de Fingolimode , Células de Schwann , Becaplermina/metabolismo , Cloridrato de Fingolimode/metabolismo , Cloridrato de Fingolimode/farmacologia , Regeneração Nervosa/fisiologia , Fenótipo , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Células de Schwann/metabolismo , Receptores de Esfingosina-1-Fosfato
16.
J Clin Invest ; 132(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36047496

RESUMO

Cancer-related cognitive impairment (CRCI) is a major neurotoxicity affecting more than 50% of cancer survivors. The underpinning mechanisms are mostly unknown, and there are no FDA-approved interventions. Sphingolipidomic analysis of mouse prefrontal cortex and hippocampus, key sites of cognitive function, revealed that cisplatin increased levels of the potent signaling molecule sphingosine-1-phosphate (S1P) and led to cognitive impairment. At the biochemical level, S1P induced mitochondrial dysfunction, activation of NOD-, LRR-, and pyrin domain-containing protein 3 inflammasomes, and increased IL-1ß formation. These events were attenuated by systemic administration of the functional S1P receptor 1 (S1PR1) antagonist FTY720, which also attenuated cognitive impairment without adversely affecting locomotor activity. Similar attenuation was observed with ozanimod, another FDA-approved functional S1PR1 antagonist. Mice with astrocyte-specific deletion of S1pr1 lost their ability to respond to FTY720, implicating involvement of astrocytic S1PR1. Remarkably, our pharmacological and genetic approaches, coupled with computational modeling studies, revealed that cisplatin increased S1P production by activating TLR4. Collectively, our results identify the molecular mechanisms engaged by the S1P/S1PR1 axis in CRCI and establish S1PR1 antagonism as an approach to target CRCI with therapeutics that have fast-track clinical application.


Assuntos
Disfunção Cognitiva , Cloridrato de Fingolimode , Animais , Sistema Nervoso Central/metabolismo , Cisplatino/efeitos adversos , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/genética , Cloridrato de Fingolimode/farmacologia , Lisofosfolipídeos/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/genética
17.
Arch Med Res ; 53(6): 562-573, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35999060

RESUMO

BACKGROUND: Endoplasmic reticulum stress (ER stress) is involved in the development and progression of various forms of heart disease and may lead to myocardial apoptosis. Sphingosine-1-phosphate (S1P) possesses cardioprotective properties, including anti-apoptosis. However, little is known about the link between S1P and ER stress-induced myocardial apoptosis. This study investigated the regulatory role of S1P in ER stress-induced apoptosis in cardiomyocytes. METHODS: ER stress and myocardial apoptosis were induced by transverse aortic constriction (TAC) or tunicamycin in mice, which were then treated with 2-acetyl-5-tetrahydroxybutyl imidazole (THI) or S1P. AC16 cells were treated with tunicamycin or thapsigargin, or pretreated with S1P, sphingosine-1-phosphate receptor (S1PR) subtype antagonists, S1PR1 agonist, and PI3K and MEK inhibitors. Cardiac function, the level of S1P in plasma and heart, ER stress markers, cell viability, and apoptosis were detected. RESULTS: S1P reduced the expression of ER stress-related molecules and ER stress-induced myocardial apoptosis in mice subjected to TAC or an injection of tunicamycin. Furthermore, in AC16 cells exposed to thapsigargin or tunicamycin, S1P decreased the expression of ER stress-related molecules, promoting cell viability and survival. Nevertheless, the S1PR1 antagonist abrogated the protection of S1P. Subsequently, in TAC S1PR1 heterozygous (S1PR1+/-) mice, S1P had no effect on ER stress and apoptosis in cardiomyocytes. Notably, in vitro, the impact of anti-ER stress-induced myocardial apoptosis by the S1PR1 agonist was reversed by PI3K and MEK inhibitors. CONCLUSION: This study is the first to demonstrate that S1P relieves ER stress-induced myocardial apoptosis via S1PR1/AKT and S1PR1/ERK1/2, which are potential therapeutic targets for heart disease.


Assuntos
Estresse do Retículo Endoplasmático , Cardiopatias , Animais , Imidazóis/farmacologia , Lisofosfolipídeos/farmacologia , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/farmacologia , Miócitos Cardíacos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais , Esfingosina/análogos & derivados , Esfingosina/farmacologia , Receptores de Esfingosina-1-Fosfato , Tapsigargina/farmacologia , Tunicamicina/farmacologia
18.
PLoS One ; 17(3): e0266055, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35333897

RESUMO

Decreased serum sphingosine 1-phosphate (S1P) has been reported in severe malaria patients, but the expression of receptors and enzymes associated with S1P has not been investigated in the liver of malaria patients. Therefore, this study aimed to investigate the expression of sphingosine kinase (SphK) and S1P receptors (S1PRs) in the liver of malaria-infected mice. C57BL/6 male mice were divided into a control group (n = 10) and a Plasmodium berghei (PbA)-infected group (n = 10). Mice in the malaria group were intraperitoneally injected with 1×106 P. berghei ANKA-infected red blood cells, whereas control mice were intraperitoneally injected with normal saline. Liver tissues were collected on Day 13 of the experiment to evaluate histopathological changes by hematoxylin and eosin staining and to investigate SphK and S1PR expression by immunohistochemistry and real-time PCR. Histological examination of liver tissues from the PbA-infected group revealed sinusoidal dilatation, hemozoin deposition, portal tract inflammation and apoptotic hepatocytes, which were absent in the control group. Immunohistochemical staining showed significant increases in the expression of SphK1 and SphK2 and significant decreases in the expression of S1PR1, S1PR2, and S1PR3 in the endothelium, hepatocytes, and Kupffer cells in liver tissue from the PbA-infected group compared with the control group. Real-time PCR analysis showed the upregulation of SphK1 and the downregulation of S1PR1, S1PR2, and S1PR3 in the liver in the PbA-infected group compared with the control group. In conclusion, this study demonstrates for the first time that SphK1 mRNA expression is upregulated and that S1PR1, S1PR2, and S1PR3 expression is decreased in the liver tissue of PbA-infected mice. Our findings suggest that the decreased levels of S1PR1, S1PR2, and S1PR3 might play an important role in liver injury during malaria infection.


Assuntos
Malária , Plasmodium berghei , Animais , Feminino , Humanos , Fígado/metabolismo , Lisofosfolipídeos/metabolismo , Malária/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Plasmodium berghei/metabolismo , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato
19.
FEBS J ; 289(18): 5670-5681, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35320610

RESUMO

Sphingosine 1-phosphate (S1P) is a lipid mediator with numerous biological functions. The term 'S1P' mainly refers to the sphingolipid molecule with a long-chain sphingoid base of 18 carbon atoms, d18:1 S1P. The enzyme serine palmitoyltransferase catalyses the first step of the sphingolipid de novo synthesis using palmitoyl-CoA as the main substrate. After further reaction steps, d18:1 S1P is generated. However, also stearyl-CoA or myristoyl-CoA can be utilised by the serine palmitoyltransferase, which at the end of the S1P synthesis pathway, results in the production of d20:1 S1P and d16:1 S1P respectively. We measured these S1P homologues in mice and renal tissue of patients suffering from renal cell carcinoma (RCC). Our experiments highlight the relevance of d16:1 S1P for the induction of connective tissue growth factor (CTGF) in the human renal clear cell carcinoma cell line A498 and human RCC tissue. We show that d16:1 S1P versus d18:1 and d20:1 S1P leads to the highest CTGF induction in A498 cells via S1P2 signalling and that both d16:1 S1P and CTGF levels are elevated in RCC compared to adjacent healthy tissue. Our data indicate that d16:1 S1P modulates conventional S1P signalling by acting as a more potent agonist at the S1P2 receptor than d18:1 S1P. We suggest that elevated plasma levels of d16:1 S1P might play a pro-carcinogenic role in the development of RCC via CTGF induction.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Carbono , Carcinoma de Células Renais/genética , Fator de Crescimento do Tecido Conjuntivo/genética , Humanos , Neoplasias Renais/genética , Lisofosfolipídeos/metabolismo , Camundongos , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Serina C-Palmitoiltransferase , Esfingolipídeos , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato
20.
Placenta ; 121: 137-144, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35325806

RESUMO

INTRODUCTION: Successful pregnancy in humans requires adequate maternal-fetal immune tolerance. During regulatory T (Treg) cells play a key role. Sphingosine-1-phosphate (S1P) and S1P receptor (S1PR) signaling represses Treg cell differentiation, but whether this relates to the process of recurrent pregnancy loss is still unclear. METHODS: Treg cells in the placenta were examined using flow cytometry. The expression of sphingosine kinase-1 and -2(SPHK1 and SPHK2), two key kinases controlling S1P production, was detected in placenta samples from 36 patients with recurrent pregnancy loss (RPL) and 40 control participants using immunoblotting. The level of sphingosine-1-phosphate receptor-1 (S1PR1) in placental T cells was examined using RT-qPCR and immunoblotting. Cell surface S1PR1 levels were detected using flow cytometry. The interactions between miRNAs and S1PR1 mRNA were predicted using bioinformatics tools and were confirmed by dual luciferase assay and immunoblotting. RESULTS: RPL patients had fewer Treg cells (p = 0.034) in the placenta, especially TIM3+ Treg cells (p = 0.0076). S1PR1 protein levels were significantly increased in placental T cells of patients with RPL (p = 0.0065). MiR-33a, miR-33b, and miR-181a were reduced in the placenta from patients with RPL, which were identified to repress S1PR1 expression by targeting the 3'UTR. Knockdown of miR-33a, miR-33b and miR-181a in human naïve T cells inhibits Treg cell differentiation by upregulating S1PR1 in vitro. DISCUSSION: This study, for the first time, successfully constructed the correlation between dysregulated miRNAs in placenta and RPL, which partially unveiled the etiology of RPL and provided a therapeutic potential for RPL treatment.


Assuntos
Aborto Habitual , MicroRNAs , Aborto Habitual/metabolismo , Regulação para Baixo , Feminino , Hematopoese , Humanos , Lisofosfolipídeos/metabolismo , MicroRNAs/metabolismo , Placenta/metabolismo , Gravidez , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...